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Foreword

This work begins with an introduction followed by a detailed chapter on the typology of
AI agents, from classical models to modern agents. We describe various classical agent
types from the literature (simple reflex agents, model-based agents, goal-based agents,
utility-based agents, learning agents) up to modern agents leveraging large language models
(LLM-based conversational agents and autonomous LLM-driven agents). A comparative
table summarizes their main characteristics, advantages, disadvantages, and application
examples. We also present concrete use cases in enterprise, notably in the real estate sector
and within internal LLM-driven systems (autonomous assistants, tool-enabled decision
agents). Architectural diagrams of different agents are proposed.

The next chapter is devoted to analyzing the MCP and A2A protocols for modern AI
agents. We explore the context and challenges of AI agent interoperability, then detail
the Model Context Protocol (MCP) standardizing the interface between agents and their
tools, and the Agent-to-Agent Protocol (A2A) facilitating inter-agent communication.
This chapter also covers the compatibility of these protocols with various modern LLM
agent types (autonomous, planner, tool-enabled).

We then introduce a new chapter on Advanced Dimensions of AI Agents, which examines
eight critical areas: security, robustness, and formal verification; governance, trust, and
ethics; advanced interoperability and dynamic orchestration; neuro-symbolic hybridization;
evaluation benchmarks and metrics; environmental impact; industrial case studies and
lessons learned; and legal frameworks and liability. Each section concludes with "Points to
Explore" for deeper investigation.

Finally, we conclude with a synthesis and perspectives on the future of AI agents, in-
cluding the emergence of self-equipped and orchestrated agents (Auto-GPT, OpenAgents,
etc.), technical, organizational and ethical challenges, and the potential of agentic AI to
revolutionize how we work and interact with the digital world.

N.B.: Should you find any errors or have questions and suggestions, please contact me at
contact@benmoussamohammed.com
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Chapter 1

Introduction

Intelligent agents have been at the heart of artificial intelligence (AI) since its inception.
An agent is typically defined as a system capable of perceiving its environment via sensors
and acting upon it via effectors to achieve its objectives [1]. In other words, it is an
autonomous software that can make decisions and execute actions on its own based on
its state and environment. For example, an AI agent can be as simple as a thermostat
regulating temperature, a mobile robot navigating physical space, or a program interacting
with users in natural language.

Traditionally, agents are classified by decision architecture sophistication [2]. Stuart Russell
and Peter Norvig popularized five primary types: simple reflex agents, model-based reflex
agents, goal-based agents, utility-based agents, and learning agents [1, 3]. These classical
agents differ in how they process information, adapt to changes, and learn from experience.

Since the 1980s, autonomous agent concepts evolved alongside AI advances [4]. Early agents
and multi-agent systems aimed to distribute tasks among entities and elicit collective
intelligence, but were constrained by hand-coded rules and limited learning. Recent
progress in generative artificial intelligence, notably the emergence of Large Language
Models (LLMs), has endowed autonomous agents with new capabilities [4]. Modern
agents now exploit pre-trained LLMs (e.g., GPT o4-mini, Claude 3.7 Sonnet) to reason
in natural language, formulate action plans, interact with users or systems, and even
self-improve via external tools [5, 6].

Leading tech companies are betting on these next-generation AI agents to transform
business processes. OpenAI, Microsoft, Google, and Salesforce have announced agents
capable of complex tasks from simple instructions, promising efficiency gains across
domains (healthcare, service automation, robotics, etc.) [7]. These modern agents include
conversational agents (LLM-based chatbots like ChatGPT) and autonomous LLM-driven
agents (e.g., Auto-GPT).

This book provides a structured review of AI agent categories and interoperability protocols.
Chapter 2 details the architecture and functioning of each classical and modern agent
type—simple reflex, model-based reflex, goal-based, utility-based, learning, LLM-based
conversational and autonomous LLM-driven agents—highlighting their adaptation, learning
and decision-making abilities. It also presents a comparative table of agent types, concrete
enterprise use cases (AI agents in real estate and internal LLM systems for tool-enabled
decision support) and architecture diagrams of sample agents.
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2 Chapter 1. Introduction

Chapter 3 analyzes modern interoperability for AI agents through the Model Context
Protocol (MCP) and the Agent-to-Agent Protocol (A2A), covering context and challenges,
features and operation, technical standards and integration, and typical use cases.

Chapter 4 explores advanced dimensions of AI agents—security, robustness and formal
verification; governance, trust and ethics; advanced interoperability and dynamic orches-
tration; neuro-symbolic hybridization; evaluation, benchmarks and metrics; environmental
impact; industrial case studies and lessons learned; and legal framework and liability.

Finally, Chapter 5 concludes with perspectives on current and future trends in AI agents,
discussing the rise of “self-equipped” and “orchestrated” agents—autonomous tool users
coordinating multiple skills—and heralding the next generation of intelligent agents (Auto-
GPT, OpenAgents, etc.).



Chapter 2

Typology of AI Agents: From Classical
Models to Modern Agents

Below are the main AI agent types. For each, we specify its architecture (internal orga-
nization and knowledge elements), adaptation and learning capabilities, and decision-
making mode.

2.1 Simple Reflex Agents
Simple reflex agents are the most basic. Their decision depends solely on the immediate
perception of the environment, with no memory of past perceptions [2]. They apply fixed
condition-action rules to choose an action in response to a current stimulus. In essence,
they execute action A whenever condition C holds in the current state.

This purely reactive architecture has no internal model or learning mechanism. The
agent directly maps sensor inputs to actions, making it very fast and suitable for simple,
fully observable environments. However, in partially observable or changing worlds, a
simple reflex agent may err or loop indefinitely, lacking memory to correct past actions [2].

Example: A thermostat that switches heating on when temperature falls below a threshold
is a classical simple reflex agent [2]. Likewise, a traffic light changing color based on vehicle
presence sensors, or a minimalist chatbot always replying with a canned phrase to a given
keyword, are simple reflex agents. They are inflexible (unhandled situations break them)
and do not learn, but are easy to implement and verify in static conditions.

2.2 Model-Based Reflex Agents
Model-based reflex agents extend simple reflex agents by maintaining a memory or
internal model of the environment [9]. Beyond condition-action rules, the agent keeps
an internal representation of unobservable world aspects, updated from perceptions. This
model lets it infer the current state from percept history and anticipate action effects.

Concretely, the agent stores an estimated state based on past percepts; upon a new
percept, it updates this state then selects an action according to rules and the internal
model [9]. This gives it some adaptation in partially observable environments: it can

3



4 Chapter 2. Typology of AI Agents: From Classical Models to Modern Agents

ignore temporarily unseen conditions if its model indicates they persist, avoiding redundant
or inappropriate actions.

However, like the simple reflex agent, it lacks explicit goals or automated rule learning.
Its decision quality hinges on the provided model: an incorrect or incomplete model leads
to poor behavior.

Example: A robot vacuum that remembers cleaned areas to avoid re-cleaning uses an
internal model [9]. Similarly, a basic conversational assistant that recalls recent user
interactions (without learning new responses) acts as a model-based reflex agent, using
context rather than reacting solely to the last message.

2.3 Goal-Based Agents
Goal-based agents (or goal-oriented agents) have, in addition to the state model,
explicit goals they seek to achieve [9, 2]. They no longer react per stimulus: they
deliberate by evaluating possible action consequences relative to their goals.

Knowing the current state (via their model) and a goal, a goal-based agent can choose a
sequence of actions leading to that goal. They use search or planning techniques (e.g.,
A*, planning algorithms) to select actions that progress toward the goal [8].

These agents are generally more flexible than reflex agents: they can adapt to goal or
constraint changes by replanning. However, efficiency depends on search capabilities and
model accuracy. Without a notion of gradated utility, they treat all goal-reaching plans as
equally satisfactory, which can be limiting if some solutions are preferable (see utility-based
agents).

Examples: A GPS computing a route to a destination is a goal-based agent [9]. It knows
the goal (destination) and explores routes to suggest the shortest or fastest. A more
advanced robot vacuum may have the goal clean room and plan systematically to cover
the entire area. Many classical AI solvers (puzzle solvers, robotic movement planners) fit
this category.

2.4 Utility-Based Agents
Utility-based agents introduce a quantifiable preference over states or action outcomes.
Reaching a minimal goal may be insufficient: multiple ways or competing goals may exist.
A utility-based agent uses a utility function that assigns a score to each state, reflecting
satisfaction or performance [8, 2].

During decision-making, the agent chooses the plan that maximizes expected utility,
potentially considering success probabilities. Thus, it can compare scenarios to pick the
most advantageous action.

These agents build on goal-based architecture (model, goals) plus a quantitative evaluation
module. They handle multi-criteria trade-offs but require well-defined utility functions,
often needing expert input or supervised learning. Utility computation can be costly in
large state spaces.
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Examples: An automated trading agent choosing trades based on expected risk–reward
ratios is utility-based [9]. An agenda planner might score meeting slots by participant
availability, lead time, and meeting importance to find the optimal slot, beyond simply
satisfying a single goal. A sales chatbot could prioritize responses or follow-ups based on
estimated conversion utility.

2.5 Learning Agents
Learning agents cut across types: any agent (reflex, goal-based, etc.) can gain learning
capability [9, 1]. A learning agent improves performance over time by learning from
experience. Architecturally, it typically comprises four components [9]:

• Performance element: chooses actions and interacts with the environment (the
core agent as in previous types).

• Learning element: updates the performance element to enhance behavior based
on feedback.

• Critic: evaluates agent performance against norms or goals, providing feedback
(rewards or penalties).

• Problem generator: optionally proposes new experiences or goals to encourage
exploration and faster learning.

With this structure (see Figure 2.1), a learning agent can start with minimal knowledge and
adapt progressively. Learning may be supervised (correcting actions), via reinforcement
(using rewards/punishments), or unsupervised.

Crucially, while the learning element evolves the agent, the performance element continues
acting. Over time, the agent expands its flexibility and efficiency even in novel situations.

Examples: A spam filter that adjusts criteria based on incoming emails and user labels
is a learning agent. A medical AI assistant refining diagnostics from physician feedback is
another [9]. Generally, any agent that updates knowledge or strategy from outcomes
embodies a learning agent.

2.6 LLM-Based Conversational Agents
Deep learning and large datasets have given rise to a new agent class: LLM-based
conversational agents. Exemplified by OpenAI’s ChatGPT, these agents interact
flexibly and contextually in natural language.

Architecture and operation: An LLM conversational agent relies on a pretrained
language model on huge text corpora, giving it implicit knowledge and coherent response
generation [11]. Its internal architecture is a transformer neural network with billions
of parameters. It can be fine-tuned or aligned with additional training (e.g., Reinforcement
Learning from Human Feedback) to follow user instructions and maintain conversational
constraints [12].

During interaction, the agent processes user input (text or transcribed speech), retains
context via its recent message window, and predicts tokens to generate a response
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based on statistical patterns. This yields natural, relevant answers in most cases.

Adaptation and learning: Within a session, such agents adapt dynamically to user
inputs, but do not learn online: once trained offline, model weights remain fixed during
conversation. Adaptation arises from contextual memory; two sessions share the same base
skills. Some agents couple with external knowledge bases or long-term memory modules
to enrich their knowledge over time, though this is external rather than neural learning.

Decision-making: LLM conversational agents lack explicit internal goals except to
provide the best possible user response. Their implicit objective is to maximize response
probability or adhere to instructions. They learn basic reasoning patterns (e.g., step-
by-step explanations, problem decomposition) enabling them to solve a wide array of
conversational tasks (translation, explanation, code generation, etc.).

These agents resemble goal-based agents where the goal is dictated each turn (answer
question, perform a linguistic task). Techniques like Chain-of-Thought prompting or
integration within planning/action loops can induce more structured decision approaches.

Examples: ChatGPT, Bing Chat, Google Bard, Anthropic Claude. In enterprise, such
agents serve automated customer support, employee assistance (inquiring internal
procedures), or decision support (document summarization, idea generation). In real
estate, a 24/7 conversational agent can handle initial client inquiries, provide property
details, and schedule visits, freeing human agents [13].

2.7 Autonomous LLM-Driven Agents
Beyond conversation, LLMs power autonomous agents capable of acting to accomplish
complex tasks, often called LLM autonomous agents or tool-using agents. These
systems use LLM reasoning to plan and execute action sequences iteratively.

General architecture:

• LLM core (reasoner): generates plans, reasoning, or decisions in text.

• External memory: stores session-acquired information (intermediate results, re-
trieved data, action history), extending the LLM’s short-term context. This memory
can take various forms inspired by cognitive science, enhancing agent capabilities:

– Short-Term Memory: Holds immediate interaction context, akin to the LLM’s
context window, usually cleared between sessions.

– Long-Term Memory: Persists information across sessions, often using vector
databases or knowledge graphs to store facts, user preferences, or past interac-
tions for retrieval.

– Episodic Memory: Records specific past events or interactions (who, what,
when, where), allowing recall of specific experiences.

– Semantic Memory: Stores general knowledge, facts, and concepts, enabling the
agent to reason about the world.
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• Tool/ API set: external tools invoked by the agent (web access, database queries,
code execution, business services), each representing a possible action.

• Controller: orchestrates the think/act cycle, feeding context (memory, goals) to
the LLM, interpreting its tool call outputs, executing tools, and returning results for
the next iteration.

Agents operate in loops, often leveraging sophisticated prompting techniques to enhance
their reasoning and action capabilities:

• ReAct (Reasoning and Acting): Formalizes the interplay between language-based
reasoning and tool usage. The LLM reasons about the task, decides on an action
(e.g., call a tool), executes it, observes the result, and refines its reasoning and next
action based on the observation [18].

• RAG (Retrieval-Augmented Generation): Grounds the LLM’s outputs in
factual, up-to-date knowledge. Before generating a response or plan, the agent
retrieves relevant information from an external source (like its long-term memory or
enterprise documents) and injects it into the prompt, reducing hallucinations and
improving contextual accuracy.

• CoT (Chain-of-Thought): Encourages the LLM to break down complex problems
into intermediate reasoning steps before providing the final answer, improving
performance on tasks requiring logical deduction or multi-step planning.

• ToT (Tree-of-Thought): Extends CoT by allowing the LLM to explore multiple
reasoning paths simultaneously, evaluating intermediate steps and outcomes to select
the most promising path towards the final solution. This enhances problem-solving
robustness.

• DSP (Directional Stimulus Prompting): Uses hints or constraints, potentially
generated by another policy model, to guide the LLM’s generation process towards
more focused, accurate, or desired answers.

These techniques are often combined within the agent’s controller logic to manage the
perceive–think–act cycle effectively.

Adaptation and learning: These agents excel at solving novel tasks, leveraging LLM
natural-language planning. They adapt in real time: upon action failure, the LLM ana-
lyzes errors and adjusts (e.g., searches alternatives). Online neural learning is uncommon;
adaptation comes from session memory and potentially RAG providing updated informa-
tion. Some frameworks enable iterative strategy refinement across missions, resembling
iterative learning.

Decision-making: Decision fuses language and logic. The agent has an explicit input
goal (e.g., find top suppliers and send quote requests). The LLM crafts a plan or next
action, deciding whether to call a tool or deliver a final response. Format conventions like
Action:<desc> vs. Response:<text> guide the controller’s execution.

Examples: In 2023, Auto-GPT and BabyAGI showcased GPT-4 looping itself to fulfill
high-level objectives autonomously [14]. Auto-GPT could be tasked to run a product
marketing campaign, autonomously gathering information, creating content, and recording
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notes. Though early versions suffered hallucinations, they spurred many toolkits and
frameworks. Platforms like RelevanceAI, MultiOn, Cognosys, and OpenAI’s custom GPTs
with function calling illustrate enterprise adoption [4].

In corporate settings, internal autonomous agents emerge: one assisting analysts by scan-
ning reports and extracting highlights, another handling IT workflows by interacting
with multiple application APIs or web interfaces to complete tasks. In real estate, an
autonomous agent might query various listings by criteria, compare offers, compile oppor-
tunity reports, and even contact owners for details. Such agents combine computational
power (scanning hundreds of listings, analyzing legal documents in seconds) with automatic
decision-making to aid professionals. A reported implementation optimized a real estate
agency’s scheduling: the AI checked existing appointments, distances, and suggested an
optimal tour [15].

These autonomous LLM agents represent state-of-the-art versatility but raise new challenges
(action reliability, security in critical systems, ethical alignment), as discussed later.

2.8 Comparative Table of Agent Types
To synthesize, Table 2.1 compares agents on architecture, learning capability, flexibility,
typical use cases, and pros/cons.
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Table : Comparison of major AI agent types by architecture, learning, flexibility, use
cases, advantages (+) and disadvantages (−).

Simple
Reflex

Predefined
if-condition-
then-action
rules; no
memory or
internal model.

None.
Fixed
behavior.

Very
limited:
handles
only pre-
defined
cases; fails
on novel
scenarios.

Simple
thermostat;
Automotive
ABS
braking;
Scripted
chatbot.

+ Fast,
reactive, easy
to design.
− No
adaptation,
errors in
partial/unex-
pected
environments.

Model-
Based
Reflex

Condition-
action rules +
internal
model
maintaining
estimated
world state.

No
autonomous
learning;
manual
modeling
only.

Better
than pure
reflex:
can
handle
partial
observ-
ability via
internal
state.

Robot
vacuum
mapping
cleaned
areas;
Context-
aware
conversa-
tional
assistant.

+ Broader
scenario
coverage via
memory.
− Model
complexity; no
automatic
evolution.

Goal-
Based

State model +
explicit goals.
Uses search/-
planning to
select actions.

None by
itself (can
pair with
learning).

Flexible:
replans
when
state or
goal
changes;
supports
alterna-
tive goal
paths.

GPS
routing;
Puzzle
solver;
Game AI
agent.

+ Directed
behavior,
anticipation.
− Computa-
tionally heavy;
needs clear
goals; treats all
solutions
equally.

Utility-
Based

State model +
utility
function
scoring
states/actions.
Decision =
maximize
expected
utility.

Implicit
only if
utility
function is
learned.

Highly
flexible:
compares
strategies,
handles
multi-
objective
trade-offs.

Automated
trading;
Multi-
constraint
scheduling;
Recommen-
dation
systems.

+ Optimized
decisions,
nuanced
choices.
− Utility
design is
complex; com-
putationally
expensive.

Agent
Type

Architecture Learning Flexibility Use Cases Advantages /
Disadvan-
tages
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Learning Adds learning
element,
critic,
problem
generator
around a base
agent.

Yes:
updates
rules/mod-
els via
feedback
(supervised,
reinforce-
ment).

High:
learns to
handle
unseen sit-
uations.

Adaptive
spam filter;
Personal-
ized
recommen-
dation
agent;
Environment-
adapting
robot.

+ Continuous
improvement,
experience-
based
performance.
− Hard to
guarantee
behavior
during learning;
needs sufficient
feedback.

LLM
Conver-
sational

Pretrained
language
model
(neural).
Implicit
knowledge;
uses context as
short-term
memory.

No online
learning
(offline
only);
occasional
fine-tuning.

Good
linguis-
tic
flexibil-
ity:
handles
varied
topics,
adapts
style.

24/7
customer
chatbot;
Text/code
writing
assistant;
Medical
advice bot.

+ Rich natural-
language
interaction,
versatility.
−
Hallucination
risk, no instant
knowledge
update,
black-box
learning.

Autonomous
LLM

Orchestrated
LLM with
external
memory +
toolset (APIs,
data). Per-
ceive–think–act
loop.

No
real-time
weight
updates;
session
memory.
Potential
iterative
learning.

Very
flexible
and
proac-
tive:
explores
ap-
proaches,
uses
various
tools;
natural-
language
goals.

Auto-GPT;
Workflow
execution
agent; Au-
tonomous
web data
gatherer.

+ Complex
task autonomy,
unlimited
external
resources,
explainable
reasoning.
−
Unpredictable
actions if
uncontrolled,
reliability/se-
curity
challenges.

Agent
Type

Architecture Learning Flexibility Use Cases Advantages /
Disadvan-
tages

2.9 Concrete Enterprise Use Cases

This section illustrates how various agent types (classical and modern) are deployed
professionally, focusing on real estate and internal LLM-based systems.
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2.9.1 AI Agents in Real Estate
Real estate increasingly adopts AI to automate time-consuming tasks and improve client
responsiveness. Examples:

• Real estate chatbots: Many agencies embed a conversational agent on websites
to answer inquiries on listings, market prices, procedures, etc. These LLM-powered
bots provide instant basic information (dimensions, neighborhood schools) and
schedule viewings based on agent availability [13], letting human agents focus on
final negotiations.

• Virtual assistants for agents: Internally, an AI calendar assistant analyzes
scheduled viewings, property locations, and travel times to propose an optimized
tour [15]. Computer-vision agents can auto-filter property photos, select the best
ones, or adjust lighting/framing to highlight listings [16].

• Document processing: Buying or renting involves many documents (applications,
leases, diagnostics, deeds). Learning agents specialized in document processing
extract key data and verify compliance. For instance, they flag missing or noncon-
forming tenant application documents, speeding administrative verification [13].
These agents resemble model-based or goal-based agents with a document knowledge
model and an objective to detect anomalies.

• Valuation and prospecting: Utility-based agents estimate property values by
cross-referencing databases (recent sales, property features, location) and computing
a utility score (sale speed, seller margin) to recommend optimal pricing. Autonomous
agents continuously monitor listings for client criteria, scraping multiple sites,
filtering by profile, and sending alerts or initiating contact on promising opportunities.
They combine LLMs (to parse natural-language descriptions) and web actions (to
extract data, send emails).

These examples demonstrate the full agent spectrum in real estate: from simple filters
(reflex agents) to advanced conversational and proactive autonomous agents. The shared
goals are increased responsiveness, cost reduction, and enhanced quality (fewer
input errors, better pricing decisions).

2.9.2 Internal LLM Agents and Tool-Enabled Decision Support
Beyond real estate, industries deploy LLM-based agents internally:

• Knowledge assistant: Large organizations use conversational agents trained on
internal documentation to help employees. A recruiter can ask an HR chatbot
procedural questions (How to approve an expense report?) and get exact answers
from policies or wikis, improving training and productivity via natural-language
queries [17].

• Technical support agent: IT uses autonomous agents for common incidents
or maintenance. On ticket creation, an LLM agent can diagnose, ask clarifying
questions, then execute fixes (service restart, password reset) via APIs or scripts,
offloading routine support tasks.

• Tool-enabled decision support: For complex analytics, an agent integrates data
analysis and report generation. A marketing analyst asking Sales trend report
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by customer segment for March? triggers SQL queries, visualization, and written
summaries [6]. The LLM mediates between natural language and BI tools, saving
time and lowering technical barriers.

• Orchestrated business workflows: Frameworks like LangChain, LangGraph, or
OpenAI Functions enable chained agents executing end-to-end workflows [6]. In
procurement, one agent handles request approval, another compares suppliers, and a
third generates purchase orders and sends them. Each specialized agent cooperates,
orchestrated by a human or software conductor, modularizing complex processes for
ease of development and reliability. This revisits classical multi-agent systems [10]
with cognitive LLM agents.

These applications show AI agents becoming everyday professional tools, automating
intelligent tasks where static rules fall short. Internal LLM assistants answer limitless
question variations, and tool-enabled agents choose appropriate services dynamically,
surpassing fixed workflows. Feedback indicates higher employee satisfaction (less manual
search) and faster processes [7], though governance—data freshness, security, human
oversight—remains essential.

2.10 Architecture Diagrams of Sample Agents

This section presents two diagrams illustrating the internal functioning of discussed agents.
Figure 2.1 shows a learning agent core architecture. Figure 2.2 depicts an autonomous
LLM tool-enabled agent flow.
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Learning Agent Core

Performance Element
(Agent Actor)

Critic
(Evaluates Actions)

Learning Element
(Updates Agent)

Problem Generator
(Proposes Exploration)

Environment
Percepts
Actions

Feedback

Evaluation

Updates

New Goals

Figure 2.1: Architecture of a Learning Agent: The performance element perceives and
acts on the environment. The critic evaluates outcomes and feeds back to the learning
element, which updates the performance element. The problem generator suggests new
exploration objectives to discover improved strategies.
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LLM Agent System

User
Goal/Prompt LLM Agent

LLM / Reasoner

External Memory

External Systems
(Tools, Web, DB)

Action Result

Instruction / Query Call Tool / API

Context

Memory Update

Plan / Action Observation

Feedback

Final Response

Figure 2.2: Flow of an Autonomous LLM Tool-Enabled Agent. The user provides a
goal or query. The agent (driven by an LLM, often using techniques like ReAct and RAG
described in Section 2.7) may decompose the task, consult external memory (potentially
comprising short-term, long-term, episodic, and semantic stores), invoke external tools
(web scraping, database queries, code execution), then iteratively plan next steps. Results
feed back into memory until the final response is delivered.



Chapter 3

Analysis of MCP and A2A Protocols for
Modern AI Agents

3.1 Modern Interoperability for AI Agents: MCP and
A2A

3.1.1 Context and Challenges of AI Agent Interoperability

AI agents powered by LLMs promise autonomous complex task automation. To realize
their enterprise potential, agents must collaborate and interoperate with each other and
diverse tools/data sources. A multi-agent ecosystem allows skill distribution (e.g., CRM
specialist agent, planning agent), akin to an "agent swarm."

Without common standards, heterogeneous agent communication is complex and costly.
Legacy standards (FIPA ACL, etc.) exist, but LLM-based autonomous agents require
specific protocols for context sharing, tool calls, and coordination. Two emerging open
protocols address modern AI agent needs:

• MCP (Model Context Protocol) by Anthropic: standardizes the interface
between an agent’s LLM and its external tools/data. It’s like a "universal port"
connecting AI to its environment.

• A2A (Agent-to-Agent Protocol) by Google: defines how agents discover, com-
municate, and coordinate for distributed tasks, giving agents a common language
for collaboration.

MCP and A2A operate at different system layers: "MCP connects agents to tools; A2A
connects agents to agents." They complement rather than compete, laying foundations
for modular, interoperable multi-agent AI ecosystems. After presenting each protocol
(operations, standards, technical layers), we compare use cases, then examine MCP and
A2A compatibility with modern LLM agents (autonomous, planner, tool-enabled).
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3.2 Model Context Protocol (MCP)
MCP, introduced by Anthropic in late 2024, defines a standardized interface for injecting
structured real-time context into language models. It specifies how an agent (or orchestra-
tor) can retrieve external resources (files, APIs, databases) into an LLM’s workspace and
how the model can invoke external functions/tools uniformly. The goal is modular context
and tool access, avoiding large monolithic prompts.
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Each LLM exposed a unique
model-specific API. Developers
wrote custom connectors for each
new model, leading to fragmented
and time-consuming integrations.

MCP introduces a standardized in-
terface for applications to interact
with any LLM, reducing complex-
ity, improving compatibility, and
accelerating model adoption.

Figure 3.1: Before/After MCP: the protocol standardizes the interface between language
models and external data sources.

3.2.1 MCP Features and Operation
Key MCP features:

• Context injection: Fetch external resources (files, databases, APIs) into the LLM’s
working context via a common interface, eliminating model-specific connectors. The
agent can pull needed data just-in-time.

• Function/tool invocation: Generalized function calling where the LLM dynami-
cally invokes registered tools (e.g., searchCustomerData, generateReport). Tools
are extensions without hardcoding into the model or prompt.

• Dynamic prompt orchestration: Build prompts modularly, injecting only context
relevant to the current task, reducing token usage and improving response relevance.
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An MCP-compatible agent uses a client–server model: the agent (client) sends MCP
requests to a server that interfaces with resources. Responses (typically JSON) feed the
LLM prompt or orchestrator. Likewise, LLM tool calls are routed via MCP to services,
and results return to the model. MCP thus standardizes agent-to-service communication,
akin to a universal LLM toolkit connector. Anthropic describes MCP as defining the
structured format for direct communication between the application’s coordination logic
(orchestrator) and the language model, including system/user message formatting and
tool listings. The model returns not only text but structured instructions (e.g., tool call),
triggering orchestrator actions.

3.2.2 Technical Standards and Integration
MCP leverages open web standards for easy integration. It operates over HTTP(S)
exchanging JSON. Exposed tools/data are documented via standardized JSON descriptors,
similar to API specs. MCP is model-agnostic: any LLM runtime supporting the format
can use it.

At OSI layer 7 (application), MCP defines an API contract above HTTP(S), using existing
web security (OAuth2, OpenID Connect, mTLS). This aligns with enterprise authentication
for secure tool access. MCP’s open-source specification and SDKs (Python, TypeScript,
Java, Kotlin) facilitate adoption. Integrations with platforms like Microsoft Copilot Studio
show growing enterprise interest.

3.2.3 Typical MCP Use Cases
In enterprises, MCP enables scenarios previously requiring ad hoc solutions:

• Internal data integration: LLM assistants can securely query CRM or data
warehouses via MCP without broad system exposure. Controlled read/write access
is provided.

• Tool-equipped agents: Autonomous agents on demand gain specific capabilities
(ticketing API access, SAP/Salesforce queries) via MCP, abstracting integrations
from agent code.

• Dynamic context building: Agents fetch and inject only relevant files/info per
user query (e.g., documents from SharePoint) to optimize prompt relevance and
token usage.

A challenge is descriptor bloat: hundreds of tools each require 100 tokens for description,
so thousands of tools can overwhelm LLM context. Smart discovery, on-demand loading,
and enhanced tool annotations help mitigate this.

3.3 Agent-to-Agent Protocol (A2A)
A2A, announced by Google in April 2025, enables direct agent-to-agent communication
and collaboration for distributed tasks. While MCP focuses on agent-tool interfaces,
A2A targets horizontal interoperability between heterogeneous agents (different vendors,
frameworks, runtimes).
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Before A2A Protocol
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Agents communicated through direct, custom-built
integrations. Every new connection required manual
development, making the system rigid, error-prone,
and hard to scale.

After A2A Protocol
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A2A Protocol enables agents to connect and collabo-
rate seamlessly through a shared communication stan-
dard, allowing effortless scaling and dynamic remote
agent interactions.

Figure 3.2: Before/After A2A: the protocol standardizes communication between agents,
replacing bespoke integrations with a common standard.
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3.3.1 A2A Principles and Operation
A2A orchestrates interactions between a client agent (initiator) and remote agents offering
specific capabilities. An example: an "Assistant" agent requests meeting scheduling from a
"Calendar" agent. The client and server roles apply per interaction.

Discovery: Agents publish an "Agent Card" (JSON) detailing identity, offered functions,
message formats, and authentication requirements. Other agents discover services via
these cards, akin to a service registry.

Task exchange: A client sends a Task object (e.g., "find top candidates" or "book
flight for 3") via JSON-RPC over HTTPS. The remote agent executes the task, possibly
multi-step, and returns artifacts (e.g., candidate list, booking confirmation).

Long-running tasks and streaming: A2A supports status updates, partial results, and
negotiation of content formats (text, images, tables). It uses JSON-RPC 2.0 over HTTP(S)
for calls/responses, and Server-Sent Events (SSE) for real-time streaming. Agents can
receive push notifications even if offline initially, ensuring robust asynchronous interactions.

3.3.2 Technical Standards and Layers
A2A is built on web standards: HTTP transport, JSON data, JSON-RPC 2.0 messaging,
SSE for streaming. Security leverages OAuth2, OpenID Connect, and API keys, akin to
OpenAPI-based REST services.

At the application layer, A2A defines a middleware for agent communication atop HTTP.
Each agent implements JSON-RPC endpoints documented by its Agent Card. A2A
manages session state, message formatting, and task lifecycle; the HTTP/TCP layers
handle transport reliability.

A2A is open (Apache 2.0) with broad industry support (Atlassian, Salesforce, SAP,
Deloitte, etc.). It’s model- and framework-agnostic, enabling any capable agent (LLM or
not) to participate. It natively handles multi-turn interactions, structured data artifacts,
multimodal content (text, audio, video), and enterprise-grade security (auth, authorization,
capability scoping).

3.3.3 A2A Use Cases
A2A enables specialized agents to collaborate on complex workflows:

• Smart personal assistant: A personal assistant agent decomposes a request
("Plan dinner for 5 tomorrow at 7pm at an Italian restaurant and send invites") by
contacting a restaurant reservation agent, a calendar agent, and a messaging agent
via A2A.

• Enterprise workflow orchestration: Distinct agents for HR, IT, Finance collabo-
rate on new-hire onboarding: HR prepares paperwork, IT creates access, Training
schedules courses—all coordinated via A2A with progress reporting and artifact
exchange.
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• Real estate advisory: A property search agent uses MCP to fetch listings, then
instructs a virtual tour agent and a mortgage broker agent to arrange tours and loan
simulations. A2A links specialized services into an end-to-end client experience.

• Open agent ecosystem: Publicly available web and analysis agents connect over
A2A, enabling on-the-fly data retrieval, summarization, and specialized processing—a
nascent "web of agents."

A2A provides communication building blocks; orchestration logic (task decomposition,
dependency management, error handling) resides in the client agent or an external orches-
trator layer.

3.4 Compatibility with Modern LLM Agents
MCP and A2A integrate seamlessly with modern LLM agent architectures, being model-
and framework-agnostic.

Autonomous agents: LLM autonomous agents cycle through planning, tool invocation,
and sub-goal creation. MCP standardizes tool access; A2A allows delegation to other
agents for specialized subtasks, leading to "multi-agent AutoGPT" where a project-leader
agent coordinates others.

Planner agents: Architectures separating planning from execution fit A2A: the planner
discovers and calls executor agents via Agent Cards. Each executor can use MCP for its
internal tool needs, modularizing planning and execution roles.

Tool-using agents: Current LLM tool frameworks (OpenAI function calling, plugins)
generalize under MCP. Tools become MCP capabilities, enabling cross-platform reuse.
Rather than embedding tool descriptions in prompts, agents request tools at runtime via
MCP server.



Chapter 4

Advanced Dimensions of AI Agents

This chapter covers eight advanced topics that go beyond core agent architectures, examin-
ing challenges and opportunities in securing, governing, integrating, hybridizing, evaluating,
and legally framing autonomous AI agents. Each section concludes with "Points to Explore"
for further investigation.

4.1 Security, Robustness, and Formal Verification
AI agents—especially those based on large language models (LLMs)—must be prevented
from executing unauthorized actions or leaking sensitive data. Formal verification methods,
such as specifying safety properties in temporal logic and using model checking, can prove
at design time that an agent never violates critical constraints. For example, one can
constrain the LLM’s generation so that it only outputs sequences satisfying a predefined
logical specification, ensuring forbidden actions are never proposed.

At runtime, defenses against adversarial attacks (e.g. prompt injection) are equally vital.
Techniques include:

• Fine-grained access control for the external tools an agent may invoke.

• Sanitization and validation of all user inputs.

• Taint tracking of sensitive data, triggering a human-in-the-loop confirmation whenever
a potential leak is detected.

In one framework, taint tracking blocked 100% of simulated prompt-injection attacks with
only a 2% performance overhead.

Points to Explore
• Develop real-time or post-hoc analyzers for LLM agents’ action traces to detect

deviations from authorized behaviors.

• Extend model checking to multi-agent systems, verifying global safety and liveness
properties of interacting agents.
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4.2 Governance, Trust, and Ethics
Beyond technical measures, AI agents must comply with ethical and legal frameworks. For
instance, the forthcoming EU AI Act categorizes AI systems by risk level and mandates
for high-risk applications:

• Mandatory human oversight and the ability to intervene.

• Comprehensive audit trails and documentation.

• Pre-deployment impact assessments.

Core ethical principles include human intervention capability, transparency (disclosure of
AI usage and explainability of decisions), fairness, and accountability.

Integrating these into the agent lifecycle requires:

• Design-time impact assessments to identify potential harms.

• Independent audits prior to deployment.

• Continuous monitoring with human-on-the-loop controls.

• Standards alignment, e.g. ISO/IEC 42001 for AI risk management.

• User transparency, informing end users they are interacting with an AI agent and
providing clear explanations.

Points to Explore
• Apply ISO/IEC standards (e.g. 42001 on AI management, 23894 on AI risk assess-

ment) specifically to autonomous agent development.

• Design explainability techniques tailored to LLM agents, such as concise human-
readable summaries of each decision step.

4.3 Advanced Interoperability and Dynamic Orchestration
As specialized agents proliferate, seamless collaboration depends on robust discovery and
coordination protocols. While MCP (Model Context Protocol) and A2A (Agent-to-Agent)
lay the foundation, enhancements include:

1. Dynamic Discovery: A decentralized "search-engine" directory of Agent Cards,
allowing on-the-fly discovery of agents by capability.

2. Load Balancing & Health Monitoring: Agents broadcast heartbeat and load
metrics so clients can distribute tasks to the least-loaded or nearest instance.

3. Protocol Negotiation: Agents negotiate data formats (JSON vs. binary), lan-
guages, and communication modes (streaming vs. request/response) at session start.

4. Service Discovery Technologies: Leveraging mDNS or gRPC registries so that
agents self-announce and discover peers without manual configuration.
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Points to Explore
• Experiment with mDNS or UDP-based discovery in production-like environments to

assess setup ease and reliability.

• Design a global Agent Cards "search-engine" directory to find specialized agents on
the fly (e.g. French–German legal translation).

4.4 Neuro-Symbolic Hybridization
Combining LLMs’ pattern recognition with symbolic reasoning yields agents that generalize
from data while ensuring logical consistency. Key approaches:

• LLM + Symbolic Program: The LLM generates high-level plans in natural
language, translated into symbolic procedures executed by a logic engine (e.g. Prolog),
preventing unsafe or illogical plans.

• Differentiable Logic Constraints: Encode logical rules as differentiable circuits
that guide the LLM’s outputs toward satisfying hard constraints.

In practice, an agent can invoke an external Prolog or OWL ontology solver (via MCP) for
rule compliance checks, while using the LLM for flexible understanding and interaction.

Points to Explore
• Integrate a Prolog engine into an LLM agent’s toolkit and measure improvements in

planning correctness.

• Develop MCP plugins for RDF/OWL knowledge bases, enabling formal ontology
queries before responding.

4.5 Evaluation, Benchmarks, and Metrics
Unlike static LLMs, autonomous agents operate through multi-step interactions and
external tool calls, requiring new evaluation metrics:

• Task Success Rate: Percentage of scenarios where the agent successfully achieves
its assigned goal.

• Hallucination Frequency: Rate at which the agent generates factually incorrect
or fabricated information.

• Tool-Call Latency & Efficiency: Measures the time taken for API calls and the
number of interactions/steps needed to complete subtasks, reflecting responsiveness
and resource usage.

• Token Consumption: Total number of tokens processed (input and output),
directly impacting operational costs.

• User Engagement Rate: Quantifies user interaction frequency and depth, indicat-
ing the agent’s appeal and perceived usefulness.
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• User Satisfaction Score: Captures qualitative user feedback (e.g., via ratings or
surveys) on the interaction quality and helpfulness.

• Adaptability Score: Assesses the agent’s performance when facing novel situations,
changing requirements, or unexpected environmental feedback.

• Knowledge Efficiency: Evaluates the relevance, accuracy, and timeliness of infor-
mation retrieved and used by the agent from its knowledge sources.

• Cost per Interaction / Task: Calculates the average financial cost associated with
each user interaction or completed task, crucial for assessing operational efficiency
and ROI.

• Response Relevancy: Measures the percentage of AI responses that completely
address the user’s query or need.

• Error Rate: Tracks the frequency of different types of errors (e.g., tool failures,
misunderstandings, constraint violations).

Benchmarks like HELM and BIG-Bench can be embedded in simulation environments;
emerging suites such as AgentBench and interactive "arena" platforms test resilience,
adaptability, and multi-agent coordination.

Points to Explore
• Design long-horizon benchmarks where an agent manages a virtual portfolio over

multiple days, handling unexpected events.

• Introduce fine-grained metrics such as "average consecutive correct actions" or "energy
cost per successful task."

4.6 Environmental Impact
The inference loops of LLM agents can be energy-intensive. Strategies to reduce carbon
footprint include:

• Quantization & Pruning: Run models at lower precision (e.g. 8-bit) and disable
redundant parameters.

• Model Distillation: Use smaller "student" models for routine operations, invoking
the full model only when necessary.

• Request Scheduling: Batch prompts, minimize iterations, and schedule heavy
tasks during periods of cleaner energy.

• FLOPs-per-Joule Reporting: Publish energy-efficiency metrics to drive eco-
friendly design.

Points to Explore
• Evaluate "Green AI" model architectures within agent frameworks to balance perfor-

mance and energy use.
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• Host an internal competition: "Which agent completes task X with the lowest
FLOPs-per-Joule?"

4.7 Industrial Case Studies and Lessons Learned
Real-world deployments illustrate both promise and pitfalls:

• Onboarding Automation: A corporation used A2A to orchestrate HR, IT, and
facilities agents, cutting new-hire processing from days to hours. Key lessons: clear
role definitions, robust error-handling, and human supervisors for exceptions.

• Marketing Simulation Swarms: An agency ran thousands of parallel agents to
test advertising budget mixes, accelerating strategy discovery but requiring strong
debugging tooling and compute-cost management.

Common takeaways: rich logging and replay for debugging, pilot deployments before
scaling, and change management to train staff in AI-human collaboration.

Points to Explore
• Conduct structured interviews with organizations in finance, healthcare, or logistics

to quantify ROI, challenges, and best practices.

• Organize post-mortem analyses of failed agent rollouts to build a shared knowledge
repository.

4.8 Legal Framework and Liability
When an autonomous agent errs or causes harm, liability may fall on:

1. Supplier Liability: Vendors under product-defect laws for design flaws.

2. Developer Fault: Software authors for coding errors or data bias.

3. User/Operator Liability: Deployers for misuse or insufficient supervision.

Liability is often shared. Risk management includes using contractual disclaimers (e.g.
"advisory use only"), mandating human oversight, and securing specialized AI insurance.
Upcoming regulations—such as the EU AI Liability Directive—aim to shift burdens of
proof and require access to agents’ decision logs. Early legal cases (e.g. AI-generated
defamation) will set important precedents.

Points to Explore
• Monitor landmark court rulings involving AI agents to understand evolving liability

frameworks.

• Draft template contract clauses between AI vendors and enterprise users, defining
responsibilities, update obligations, and indemnification.
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Conclusion and Perspectives

AI agents span from simple automata to complex autonomous systems with advanced
learning. Classical agents provide conceptual foundations (reflex to reinforcement learning).
Modern LLM agents add flexibility and generality, handling diverse queries without
explicit programming. Autonomous LLM agents further automate end-to-end complex
workflows.

We see convergence: classical structures gain learning; LLM agents integrate classical
control architectures (e.g., goal orientation). Tool-equipped agents (self-calling external
APIs) mark a key evolution. Frameworks like OpenAgents [17], LangChain, Microsoft
Autogen simplify enterprise adoption. Multi-agent orchestration (e.g., HuggingGPT [20])
envisions ecosystems of specialized agents, coordinated by meta-agents or orchestration
platforms, aiming for more efficient collective intelligence.

Protocols MCP and A2A are foundational for modular, interconnected agent ecosystems.
MCP standardizes agent–tool interfaces; A2A standardizes inter-agent communication.
Together, they enable interoperable intelligent agent networks, akin to how web protocols
unified the Internet, paving the way for a global network of intelligent agents.

Future technical challenges include enhancing reliability (reducing hallucinations), in-
tegrating symbolic checks for logical verification, and hybrid neuro-symbolic methods.
Organizationally, human–agent integration demands effective control interfaces, permis-
sion policies, and trust mechanisms, ensuring agents explain decisions and allow human
override. Ethically and legally, agent autonomy raises responsibility questions (e.g.,
medical or legal advice), data sensitivity, and compliance with regulations like the EU AI
Act.

Looking back at the chapter on Advanced Dimensions of AI Agents, we covered eight
critical areas—security, robustness and formal verification; governance, trust and ethics;
advanced interoperability and dynamic orchestration; neuro-symbolic hybridization; evalu-
ation, benchmarks and metrics; environmental impact; industrial case studies and lessons
learned; and legal frameworks and liability—each illustrated with "Points to Explore" for
future work. This comprehensive perspective underscores that developing and deploying
autonomous agents responsibly requires a holistic approach spanning formal methods,
ethical governance, dynamic standards, hybrid architectures, rigorous metrics, sustain-
ability considerations, real-world feedback, and clear liability models. Adhering to key
deployment principles—such as ensuring clarity of purpose, designing for scalability,
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maintaining contextual awareness, implementing robust monitoring and feedback
loops, and committing to iterative improvement—will be crucial for success.

In sum, we are witnessing the rise of agentic AI [19], where AI evolves from passive tools
to active actors initiating and chaining actions autonomously. This promises transformative
impacts across sectors, making AI agents virtual colleagues that execute complex tasks
aligned with human intentions. Mastery of both classical agent theory and modern LLM
architectures, supported by standards like MCP and A2A, will drive the next wave of
innovation in how we work and interact with digital systems.
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